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ABSTRACT

Separation-induced leading-edge vortices can dominate the flow about slender
wings at moderate to high angles of attack, often with favorable aerodynamic
effects. However, at the high angles of attack which are desirable for take-
off and landing as well as subsonic-transonic maneuver the vortices can break
down or "burst" in the vicinity of the aircraft causing many adverse effects;
these include lift loss, pitchup, and buffet. The flow in the core of
leading-edge vortices is generally affiliated with the vortex breakdown
phenomenon.

A theory is presented for the flow in the core of separation-induced, leading-
edge vortices at practical Reynolds numbers. The theory is based on matching
inner and outer representaions of the vortex. The inner representation models

continuously distributed vorticity and includes an asymptotic viscous subcore.

The outer representation models concentrated spiral sheets of vorticity and is

fully three dimensional. A parameter is identified which closely tracks the

vortex breakdown stability boundary for delta, arrow, and diamond wings.
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A THEORY FOR THE CORE FLOW OF LEADING-EDGE VORT-ICES

Shown in this figure is an outline of the presentation. The chief concepts of

the theoretical formulation will first be reviewed, followed by some computed

results which highlight the general character of the solutions. An analysis

for incipient vortex breakdown is also discussed. Additional details of the

theory have recently been given by Luckring (1985).

• Theoretical formulation

• Inner/outer representation

• Initial conditions

• Boundary conditions

• Computed results

• Experimental correlation

• Vortex breakdown analysis

• Concluding remarks
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THEORETICALFLOWMODEL

Previous theoretical studies have been focused primarily on either (1)
modeling the global vortex flow field with a simplified vortex core represen-
tation, or (2) modeling detailed vortex core flow for simplified external
conditions. At practical Reynolds numbers, the composite leading-edge vortex
flow can be subdivided into overlapping regions which can be modeledwith
appropriate subclasses of the full governing equations; it is this feature of
the flow which is exploited by the present approach. With this approach,
considerable advantage can be taken of previous modeling studies of the
isolated core and the leading-edge vortex so long as appropriate matching
conditions can be established between the two models.

The outer flow is modeled by the free-vortex-sheet theory of Johnson, et al.
(1980), a higher-order panel method which solves the Prandtl-Glauert equation
including nonlinear boundary conditions pertinent to the concentrated
vorticity representation of the leading-edge vortex. This method generally
provides good estimates of inviscid wing pressure distributions as well as
force/moment properties. The inner flow is modeled by the quasicylindrical
Navier-Stokes equations and is initiated with an asymptotic solution valid for
conical external conditions. Additional details of the inner flow model as
well as matching the inner flow to the outer flow are described subsequently.
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QUASICYLINDRICAL VORTEX CORE

The purpose of the inner flow fomulation is to provide a physically realistic
representation of the flow in the core of a three-dimensional, leading-edge
vortex, chiefly by accounting for the effects of distributed vorticity as well
as viscosity. The unburst cores tend to be slender and, as a consequence,
exhibit large gradients in the radial direction as compared to the axial
direction. Therefore, the quasicylindrical Navier-Stokes equations of Hall
(1966) were chosen as the pilot model of the core flow. The steady flow is
assumed to be laminar, incompressible, and axially symmetric; in addition, the
slenderness condition renders the equations parabolic in the axial direction.
The solution is advanced in space by standard finite difference techniques
from the initial plane solution of Stewartson and Hall (1963) with centerline
boundary conditions appropriate to the axisymmetric assumption and with edge
boundary conditions obtained from the free-vortex-sheet theory.

M.G. Hall (1966)
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INNER/OUTER MATCHING--NONAXlSYMMETRIC EFFECTS

The inner-flow representation of the vortex core requires "edge" values of
axial flow, circulation, and pressure as well as the region of the edge
itself. The matching must be accomplished in the vicinity of the vortex (away
from the wing) and must account for the differences between the inner and the
outer representations of the vortex.

In the overlap region, both theories model inviscid vortices, the former
modeling axisymmetric, continuously distributed vorticity and the latter
modeling nonaxisymmetric concentrated vorticity. These differences can be
reconciled with the theoretical solution of Mangler and Weber (1966) for a
spiral sheet of concentrated vorticity embedded in an otherwise irrotational
potential flow. The most noteworthy aspect of their asymptotic solution is
that "the leading terms of the velocity components for a potential flow with
vorticity concentrated along a sheet are the same as for an axisymmetric flow
with continuously distributed vorticity," as given by Hall (1961) and used
herein. To lowest order, the (axisymmetric) velocity and vorticity fields are
aligned, and the pressure may therefore be derived from a Bernoulli
relationship.

The Mangler and Weber (1966) solution provides a guide for the extraction of
axisymmetric boundary condition quantities from the nonaxisymmetric outer
formulation. Nonconical effects for the flow in the vicinity of the wing apex
must also be addressed as discussed by Luckring (1985). Viscous-inviscid
interaction effects are not presently accounted for.

• Mangler & Weber (1966)
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COMPARISON OF VORTEX SHEET TRAJECTORIES

One approach to quantifying the matching of the inner and the outer models of
the vortex is to compare the vortex sheet trajectories. This correlation
stresses all three velocity components, and the outer region of the inner
model (vortex core) should agree with the inner region of the outer model
(vortex sheet) if the solutions are reasonably matched.

The Mangler and Weber (1966) solution, based on boundary condition data from the
datum free-vortex-sheet solution (AB = 0), shows reasonable correlation with
the extended rollup free-vortex-sheet solution (A8 = 3x), except in the region
given by x < Ae < 2x. The free-vortex-sheet solution is seen to be somewhat
oblate, and nonaxisymmetric effects are, therefore, one cause for differences
between the two solutions. Even so, the correlation is encouraging, and
improvements based on advanced matching concepts can be expected.
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INNER TO OUTER FLOW MATCHING

Another approach to quantifying the matching between the inner and the outer
models of the vortex is to directly compare the individual velocity compo-
nents. The radial distributions of swirl and axial velocity were computed in
the datum plane (Ae = O) and show good correlation between the two represen-
tations of the vortex. The correlation for velocities in the plane oriented
x/2 radians from the datum plane was not as good, consistent to the
correlation of vortex sheet trajectories shown on the previous figure.
Additional studies indicated that the shown correlation was independent of the
amount of modeled rollup in the free-vortex-sheet theory.
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EXPERIMENTAL CORRELATION--VELOCITIES

Calculations have been performed for a wide range of conditions including
isolated vortex core flows for generic external conditions as well as
composite leading-edge vortex flows for delta, arrow, and diamond wings over a
broad range of leading-edge-sweep angles and angles of attack. Typical
velocity profiles through the core of the vortex are shown in this figure for
a 75-degree delta wing at an angle of attack of 15 degrees. The experimental
results of Earnshaw (1962) were obtained for a 76-degree (unit aspect ratio)
delta wing at an angle of attack of 14.9 degrees. The freestream reference
Mach number was approximately 0.09 and the Reynolds number, based on the wing
root chord, was approximately three million.

Comparisons between the theoretical and experimental velocity profiles show
reasonable correlations for the outer region of the vortex core and for the
radial extent of the viscous subcore. The major discrepancy of this
correlation is the centerline axial flow, and both theory and experiment are
probable contributors to this discrepancy. Although the five-hole Conrad
probe was small as compared to wing dimensions, its diameter is still
appreciable as compared to the scale of the viscous subcore. Apart from the
probe perturbing the flow itself, gradients across the probe head will also
affect the measurements. Theoretically, the major factors affecting the lack
of correlation are the incompressible and laminar flow assumptions. Because
these flows have a local maximum in velocity at or near the vortex axis, they
can be locally compressible at incompressible reference conditions. The
inclusion of compressibility effects or turbulence effects would lessen the
centerline axial flow.
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EXPERIMENTAL CORRELATION--PRESSURES

The correlation between theoretical and experimental pressure coefficients is
consistent with the velocity correlations. The centerline static pressure
coefficient is more negative than the experimental value, chiefly because of
the increased centerline axial flow. However, static pressures of this
magnitude are not unusual for vortex core flow. At higher angles of attack
Earnshaw (1962) recorded C values of approximately -24; for a 65-degree

swept wing at 15 degrees incidence Lambourne and Bryer (1962) recorded Cp
values in the vicinity of -13.

The theoretical total pressure losses are confined to the viscous subcore
whereas, experimentally, they are evidenced over the majority of the region
shown. However, the theory provides a reasonable estimation of the maximum
total losses at the centerline of the vortex.

The computed flow exhibits many of the general features of leading-edge vortex
core flow; the flow is weakly singular in the radial direction, has a local
maximum axial velocity at the vortex axis several times the freestream value,
and has total pressure losses in this same region.
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DEFINITION OF HELIX ANGLE

The vortex core flow was analyzed a posteriori by several established criteria
for evidence of incipient vortex breakdown. Included in this analysis were
the boundary-layer analogy of Hall (1967), the hydrodynamic stability
criterion of Ludwieg (1962), and a critical helix angle criterion. Of these
criteria, the critical helix angle was found to offer the best correlation
with experimental trends.

The tangent of the helix angle is defined as the ratio of the swirl to the
axial velocity. It provides a local measure of the flow going through the
axisymmetric plane to the flow going down the plane. Previous research has
shown that vortex breakdown can occur for values of the helix angle in excess
of some critical value, generally in the vicinity of 45 degrees, when
accompanied by an adverse longitudinal pressure gradient.

Axisymmetric plane-_ tan • = v/w

r

Previous research has shown that tan e > 1 ==_ breakdown
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HELIX ANGLE CONTOURS--ALPHA = 20 DEGREES

Analysis of the vortex core flow for local helix-angle effects is presented in
the form of contour distributions. The roughly diagonal edge where the
contours terminate corresponds to the edge of the inner computational space as
given by the free-vortex-sheet theory. This contour plot is for a 70-degree
delta wing at an angle of attack of 20 degrees; the data of Wentz and Kohlman
(1968) indicate that breakdown will first occur at the trailing edge of this
wing at approximately 29 degrees angle of attack.

Several aspects of the helix angle distribution are noteworthy. There are two
regions of maximum helix angle, both of which occur at the edge of the vortex.
One is near the apex and the other is in the vicinity of the trailing edge.
In addition, the structure of the vortex in terms of this parameter changes
from the wing to the wake; over the wing the maximum helix angle occurs
radially at the edge of the vortex, whereas in the wake this maximum occurs
well within the vortex. Finally, a region of maximum helix angle persists
well downstream from the trailing edge.
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HELIX ANGLE CONTOURS--ALPHA = 30 DEGREES

A similar contour analysis of the flow in the core of the vortex is shown for
an angle of attack slightly in excess of the critical value for which break-
down occurs at the trailing edge. The general features of this solution are
similar to the 20-degree case of the previous figure. For this case the
maximal value of the helix angle tangent exceeds unity.

Additional analysis showed that, in general, near the apex the centerline
vortex core flow exhibited a proverse longitudinal static pressure gradient
whereas near the trailing edge this gradient was adverse.
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TRAILING-EDGE MAXIMUM HELIX ANGLE

The various solutions were analyzed for the conditions of a maximum helix
angle occurring in conjunction with an adverse longitudinal pressure gradient.
These conditions occurred in the vortex in the vicinity of the trailing edge.
The resultant values are shown for several of the delta wings analyzed along
with the experimentally determined values of :b, the angle of attack for
which vortex breakdown first occurs at the trailing edge, from the Wentz and
Kohlman (1968) data. The experimental condition of vortex breakdown at the
trailing edge of the delta wings correlates roughly with a constant theore-
tical value of the maximum helix angle at the trailing edge. With the present
formulation, this value is slightly greater than one; for reference purposes
the conical value of 1.16 is also shown.

2,0 -

Delta wings

1.5

tan(bte, max 1.0

0.5 -

O B

Experimental ab,
Wentz and Kohlman

A = 60 °

70 °

80 °
85 ° Theory

tan (b b =

-- 1.16

1.0

I I I I I I

0 10 20 30 40 50
O(

182



VORTEX BREAKDOWNSTABILITY BOUNDARY

This correlation is also shown in a more familiar parameter space; the
theoretical results are based on a critical helix angle tangent value of
unity. This numerical correlation indicates a good estimation of the strong
leading-edge sweep effects on the vortex breakdown stability boundary for
delta wings. Additional studies have shown that the same criterion with the
same critical value also provided a good estimation of the weak trailing-edge
effects on this boundary.
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CONCLUDING REMARKS

The flow in the core of a three-dimensional, separation-induced, leading-edge
vortex can be calculated by appropriately matching inner and outer represen-
tations of the vortex. This approach is not strictly limited to the theories
or applications of the present formulation. Other vortical flows (e.g.,
forebody vortices) could be addressed in a similar fashion with models
appropriate to the particular flow.

The computed results of the present formulation exhibit many of the prominent
features of the subject flow. These include weak radial singularities in the
inviscid, rotational flow, axial velocity excesses at the vortex core axis
which are several times the freestream reference value, and total pressure
losses in the viscous subcore which arise due to modeled viscous effects. The
solutions are, in general, highly three-dimensional, and showed reasonable
correlation with experiment.

The experimental condition of incipient vortex breakdown at the trailing edge
of delta, arrow, and diamond wings was found to closely correlate with the
theoretical condition of a critical helix angle in conjunction with an adverse
longitudinal pressure gradient.

The method can readily be extended to account for a number of additional
effects. These include compressibility, turbulence, elliptic effects, and
viscous/inviscid interaction consequences. Systematic extension of the
present formulation should provide additional insights to the vortex breakdown
phenomena for three-dimensional flows at practical Reynolds numbers.

• Method demonstrated

• Matched inner/outer representations

• Nonconical effects

• Nonaxisymmetric effects

• Computed results

• Prominent flow features exhibited

• Reasonable correlation with experiment

oVortex breakdown stability boundary

• Method is readily extendable

• Compressibility

• Eddy viscosity

• Elliptic core

• Viscous/inviscid interactions
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